

Lead Ions in the LHC

John Jowett Accelerator and Beams Department CERN

Outline of talk

Introduction – the LHC and its experiments LHC in the lineage of heavy ion facilities Lead ion injector chain

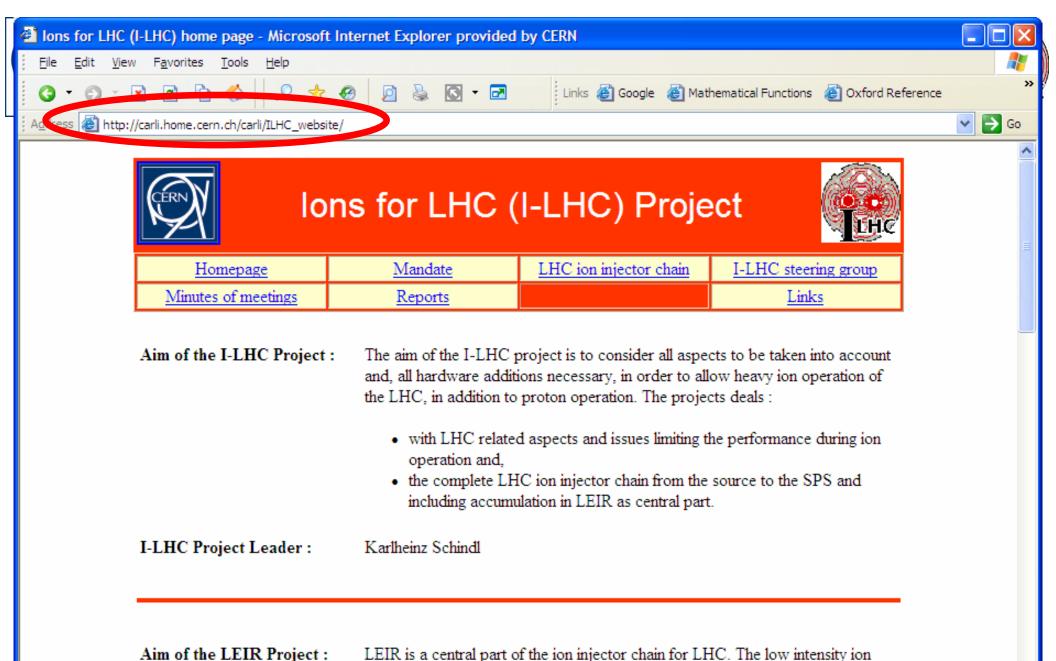
Design parameters of the LHC as a lead ion collider

Accelerator physics issues limiting the performance

Schedule

So people will stop asking me ...

Introduction



LHC designed mainly as a proton-proton collider But was not not called "LPC" for nothing ...

Will also operate as heavy ion collider for something like 1 month/year

ALICE experiment dedicated to ions, CMS and ATLAS also interested

The acceptable luminosity for heavy-ion physics is limited by the capabilities of the experiments.

beam coming from Linac 3 will be accumulated and cooled with strong electron cooling, in order to obtain dense ion bunch useful for LHC ion operation. To this end, the existing LEAR machine will be reconstructed and modified, based on

Local intranet

CERN

Lead ions in LHC main ring: credits

Karlheinz Schindl

overall I-LHC project leader

John Jowett

LHC main ring

Hans Braun

collimation

Moira Gresham (Reed

College, Portland)

ECPP, software

Bernard Jeanneret

nuclear effects, aperture

Edgar Mahner

Vacuum: desorption

studies

Igor Pshenichnov (INR,

Moscow)

nuclear cross sections

Elena Shaposhnikova

longitudinal dynamics

+ many others in LHC

project

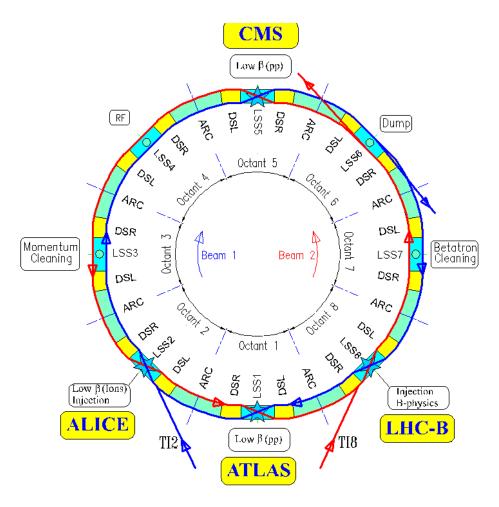
Optics, instrumentation,

etc.

Pre-2003: Daniel

Brandt, ...

The LHC



Collisions with ions

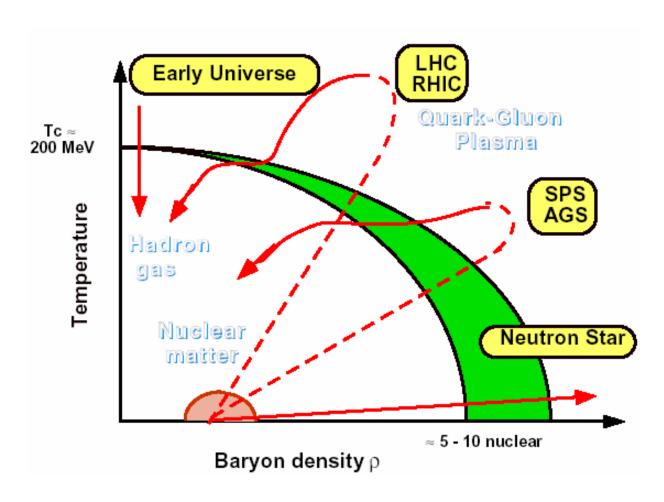
Consider ²⁰⁸Pb⁸²⁺-²⁰⁸Pb⁸²⁺ collisions for now

CM energy 1.15 PeV with nominal dipole field.

Beam energy 2.76 TeV/u p-Pb, p-A etc. later

ALICE detector specialises in heavy ion physics

CMS and ATLAS are also interested in ions


At nominal luminosity/bunch, initial lifetime is short with 3 active experiments.

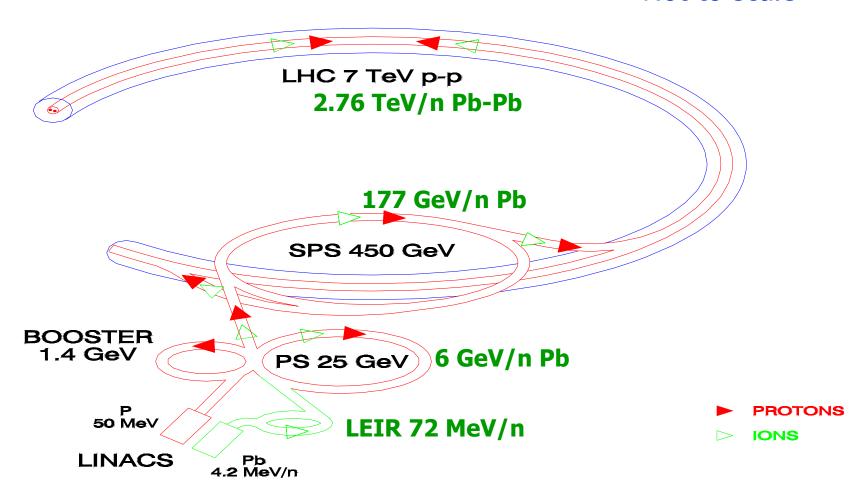
Run with 1 or 2 experiments or adapt luminosity during fill.

Hadronic matter

Phase diagram of hadronic matter showing phase transition from hadron gas to quark-gluon plasma. Predictions of QCD.

Heavy Ion Physics Parameters

		SPS	RHIC	LHC	
CM energy/nucleon	$\sqrt{s}/u/[\text{GeV}]$	17	200	5500	×28
Charged multiplicity	$\frac{dN_{ch}}{dy}$	400	800	> 3000	challenge
Energy density	$\epsilon/[\text{GeV}/\text{fm}^3]$	3	5	15 - 60	denser
Freeze – out volume	V_f / fm^3	$\approx 10^3$	$\approx 10^4$	$\approx 10^5$	larger
QGP lifetime	$ au_{ ext{QGP}}/[ext{fm}/c]$	≤ 1	1.5 - 4	> 10	longer
Thermalization time	$ au_0/[\mathrm{fm}/\mathit{c}]$	≥ 1	≈ 0.2	≤ 0.1	faster
	$ au_{ m QGP}/ au_0$	1	6	≥ 30	


With increasing energy, more partons are available, interact more effectively. Thermalized high-T phase established more quickly and lasts longer.

The LHC Injector Chain - Schematic

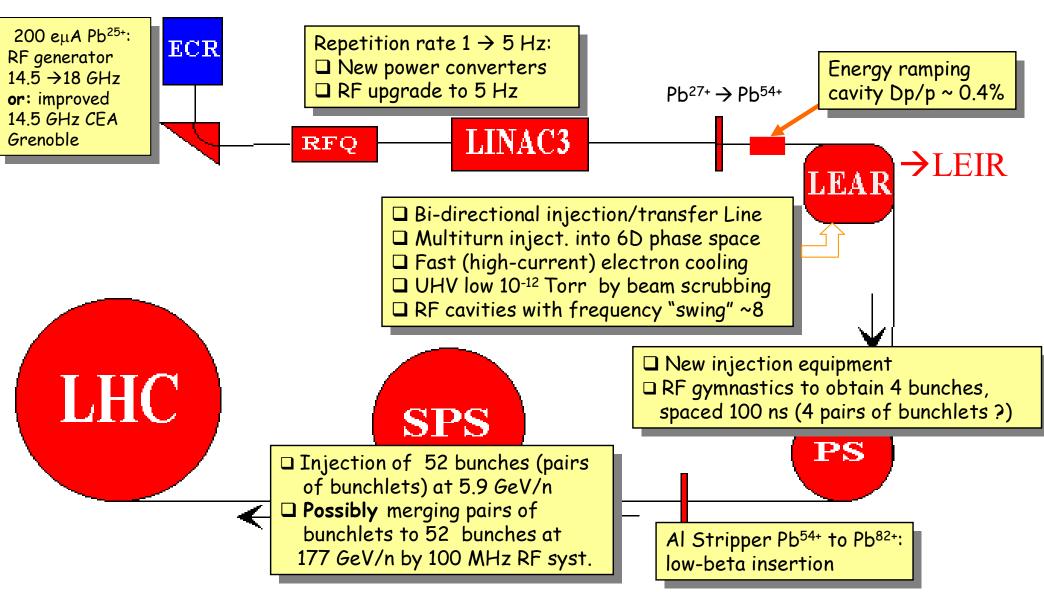
Not to scale

LHC Pb Injector Chain: Key Parameters for luminosity 10²⁷ cm⁻² s⁻¹

	ECR Source	→Linac 3	4 LEIR—	→ PS 13,12,8	SPS 12	LHC
Output energy	2.5 KeV/n	4.2 MeV/n	72.2 MeV/n	5.9 GeV/n	177 GeV/n	2.76 TeV/n
²⁰⁸ Pb charge state	27+	27+ → 54+	54+	54+ → 82+	82+	82+
Output Bp [Tm]		2.28 > 1.14	4.80	86.7 →57.1	1500	23350
bunches/ring		•	2 (1/8 of PS)	4 (or 4x2) ⁴	52,48,32	592
ions/pulse	9 10 ⁹	1.15 10 ⁹ 1)	9 108	4.8 108	\leq 4.7 10^9	4.1 10 ¹⁰
ions/LHC bunch	9 10°	1.15 109	2.25 10 ⁸	1.2 108	9 107	7 107
bunch spacing [ns]				100 (or 95/5) ⁴	100	100
ε*(nor. rms) [μm] ²	~0.10	0.25	0.7	1.0	1.2	1.5
Repetition time [s]	0.2-0.4	0.2-0.4	3.6	3.6	~50	~10'fill/ring
ϵ_{long} per LHC bunch ³			0.025 eVs/n	0.05	0.4	1 eVs/n
total bunch length [ns]			200	3.9	1.65	1

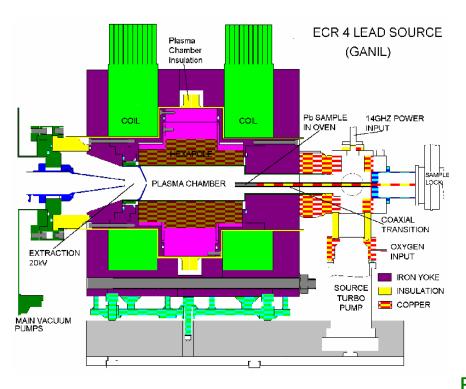
¹50 eμA_e x 200 μs Linac3 output after stripping

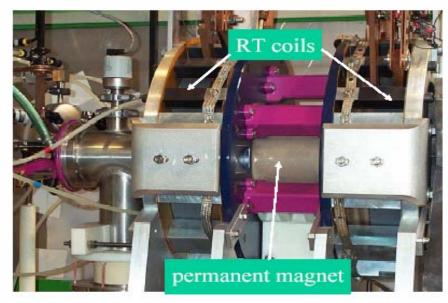
² Same physical emittance as protons, with the same tight emittance budget


 $^{^3}$ For 208 Pb $^{82+}$, 1 eVs/n ~ 2.5 eVs/charge

⁴If bunchlets are used in the SPS

Pb Ions for LHC: Hardware Upgrades

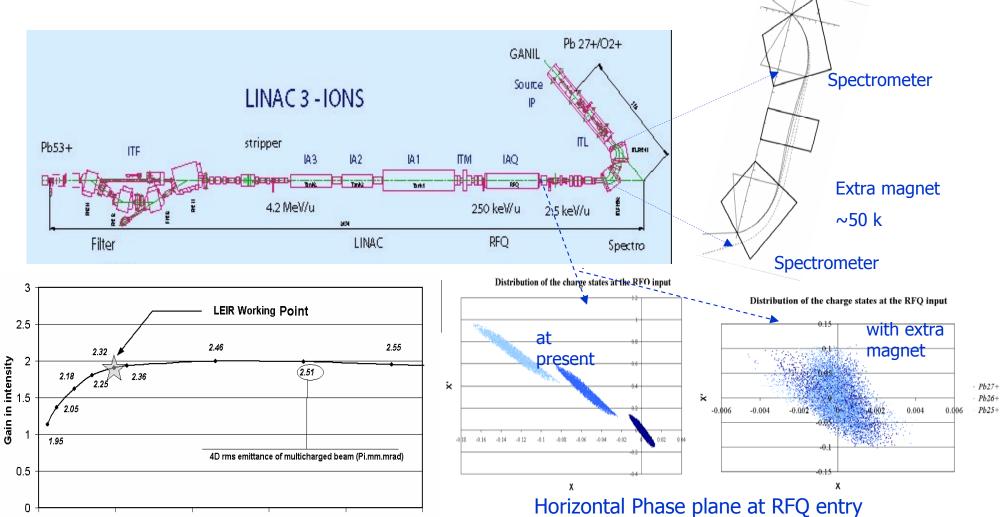




Heavy Ion (Lead) Linac3 Source

Present ECR (Electron Cyclotron Resonance Source) delivers $\sim 120~e\mu A~x$ 200 μs Pb²⁷⁺. To get near the nominal 200 $e\mu A$, upgrading from 14.5 to 18 GHz microwave frequency may be envisaged

GTS (Grenoble Test Source) from CEA


ECR source with super-performance: >200 eμA with 14.5 GHz expected (proven with Bi)
Purchase of a GTS source being negotiated

LEIR Running-in + Early Scheme feasible with present source, albeit without margin

Lead Charge States 25+,26+,27+ in Linac3

A. Lombardi, V. Coco, R. Scrivens, E. Sargsyan

0.002

0.003

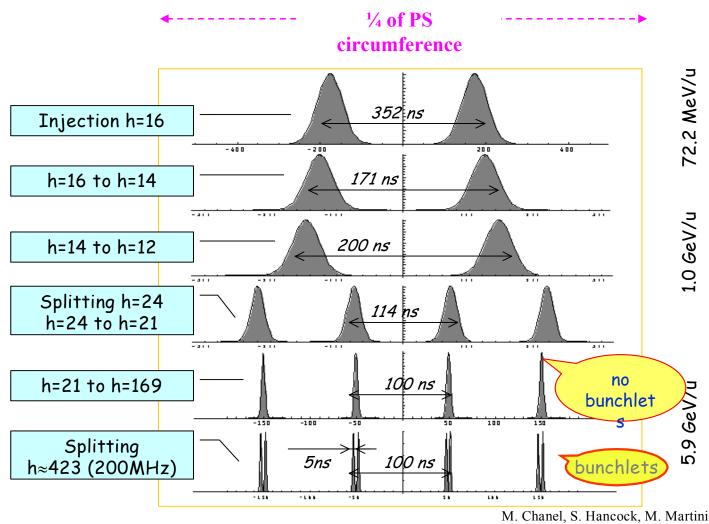
relative momentum spread at debuncher output (+-)

0.004

0.005

Extra magnet makes spectrometer dispersion-free Results partially verified experimentally:

Intensity gain factor >1.5 appears realistic


0.001

RF Gymnastics in the PS for Pb ions

Skip LEIR

Chamonix XII - Session 2 Summary - J.-P. Riunaud

13

SPS

Bunchlets - Yes or No?

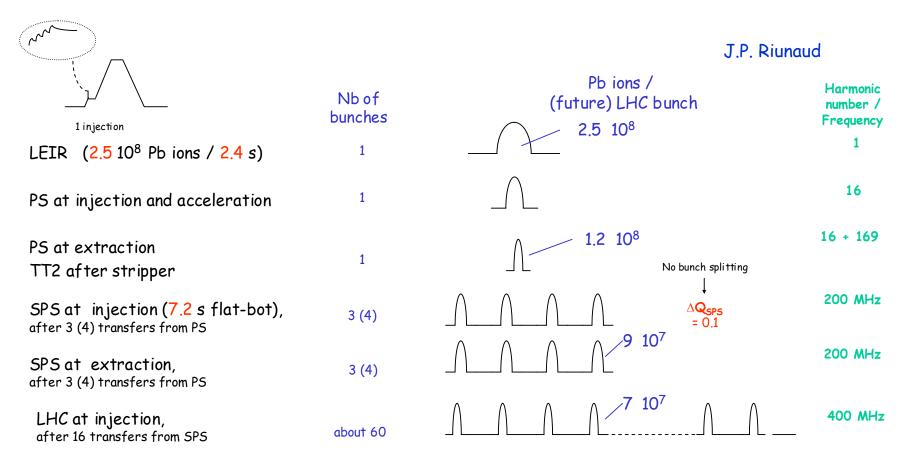
- Injection plateau lasting 43.2 s at 57.1 Tm, accumulating up to 13 PS batches of 4 bunches (4 pairs of bunchlets) each. Very little transverse blow-up/losses allowed
- Pb ions suffer from incoherent space charge detuning and Intra-Beam Scattering (IBS)
- Halving the number of ions/bunch (= making bunchlet pairs) halves these effects as well.
- Bunchlet pairs can be recombined by a 100 RF system before extraction to the LHC
- Space charge detuning ΔQ (about the same in either plane) for nominal Pb ion bunches:

0.082 calculated

 $p\overline{p}$ experience: SPS can stand not more than $\varDelta Q=0.07$ Recent measurements (with p): DQ up to 0.18 acceptable on the injection plateau

- IBS growth times (nominal bunches): ∼300 s which is acceptable
- $\varDelta Q$ and IBS the same for Nominal and Early schemes (bunch properties identical)

No bunchlets in the early scheme ("calculated risk")


No installation of 100 MHz RF systems now (intended to limit their impact on p beams)

CERN

Early Lead Operation Scheme

- \Box Lower L=5 10^{25} cm⁻²s⁻¹ (factor 20) by fewer bunches (1/10) and β^* =1
- □ Keep nominal bunch population (7 10⁷ ions/bunch) to study limitations
- □L useful for physics (early discoveries)
- much easier for injectors (Linac3, LEIR, PS), shorter LHC filling time (4'/ring)
- \square improved Luminosity lifetime because of larger β^*

Parameters for Lead Ions in LHC

Revision/verification of all parameters

Started at Chamonix Workshop 2003

Summarised in forthcoming LHC Design Report Vol I, Chapter 21 (already on Web site)

Recent changes:

Optics update, crossing scheme for ALICE
Introduction of "Early Ion Scheme"
Performance limit from ECPP (later ...)
Complete revision of lifetimes, IBS, etc.
First studies of collimation of lead ions
No 200 MHz RF system for capture at injection
now

Nominal scheme parameters

.

		Injection	Collision				
Beam parameters							
Lead ion energy	[GeV]	36900	574000				
Lead ion energy/nucleon	[GeV]	177.4	2759.				
Relativistic "gamma" factor		190.5	2963.5				
Number of ions per bunch		7. >	$\times 10^{7}$				
Number of bunches		5	592				
Transverse normalized emittance	$[\mu\mathrm{m}]$	1.4 ^a	1.5				
Peak RF voltage (400 MHz system)	[MV]	8	16				
Synchrotron frequency	[Hz]	63.7	23.0				
RF bucket half-height		1.04×10^{-3}	3.56×10^{-4}				
Longitudinal emittance (4σ)	[eV s/charge]	0.7	2.5^{b}				
RF bucket filling factor		0.472	0.316				
RMS bunch length ^c	[cm]	9.97	7.94				
Circulating beam current	[mA]	6	.12				
Stored energy per beam	[MJ]	0.245	3.81				
Twiss function $\beta_x = \beta_y = \beta^*$ at IP2	[m]	10.0	0.5				
RMS beam size at IP2	μ m	280.6	15.9				
Geometric luminosity reduction factor F ^d		-	1				
Peak luminosity at IP2	$[\mathrm{cm}^{-2}\mathrm{sec}^{-1}]$	-	$1. \times 10^{27}$				

Nominal scheme, lifetime parameters

		Injection	Collision
Interaction	data	-	
Total cross section	[mb]	-	514000
Beam current lifetime (due to beam-beam) ^a	[h]	-	11.2
Intra Beam Sc	attering		
RMS beam size in arc	[mm]	1.19	0.3
RMS energy spread $\delta E/E_0$	$[10^{-4}]$	3.9	1.10
RMS bunch length	[cm]	9.97	7.94
Longitudinal emittance growth time	[hour]	3	7.7
Horizontal emittance growth time ^b	[hour]	6.5	13
Synchrotron R	adiation	•	
Power loss per ion	[W]	3.5×10^{-14}	2.0×10^{-9}
Power loss per metre in main bends	$[Wm^{-1}]$	8×10^{-8}	0.005
Synchrotron radiation power per ring	[W]	1.4×10^{-3}	83.9
Energy loss per ion per turn	[eV]	19.2	1.12×10^{6}
Critical photon energy	[eV]	7.3×10^{-4}	2.77
Longitudinal emittance damping time	[hour]	23749	6.3
Transverse emittance damping time	[hour]	47498	12.6
Variation of longitudinal damping partition number ^c		230	230
Initial beam and lumi	nosity lifetimes	S	
Beam current lifetime (due to residual gas scattering) d	[hour]	?	?
Beam current lifetime (beam-beam, residual gas)	[hour]	-	< 11.2
Luminosity lifetime ^e	[hour]	-	< 5.6

Early scheme Parameters

		Injection	Collision			
Beam par	rameters		-			
Number of bunches	Number of bunches 62					
Circulating beam current	[mA]		0.641			
Stored energy per beam	[MJ]	0.0248	0.386			
Twiss function $\beta_x = \beta_y = \beta^*$ at IP2	[m]	10.0	1.0			
RMS beam size at IP2 ^e	[μm]	280.6	22.5			
Peak luminosity at IP2	$[\mathrm{cm}^{-2}\mathrm{sec}^{-1}$] -	5.4×10^{25}			
Interacti	on data					
Beam current lifetime (due to beam-beam) ^a	[h]	-	21.8			
Synchrotron	Radiation					
Power loss per metre in main bends	$[\mathrm{Wm}^{-1}]$	8.5×10^{-9}	5.0×10^{-4}			
Synchrotron radiation power per ring	[W]	1.5×10^{-4}	8.8			
Initial beam and luminosity lifetimes						
Beam current lifetime (beam-beam, residual gas)	[hour]	_	< 21.8			
Luminosity lifetime (as in Table 21.3)	[hour]	-	< 11.2			

Only show parameters that are different from nominal scheme

Some things are straightforward ...

Beam current and stored energy 100 times lower

Many limits to performance of proton beams are not a problem for lead ion beams

impedance-driven collective effects

beam-beam

electron cloud

activation and maintenance of collimators

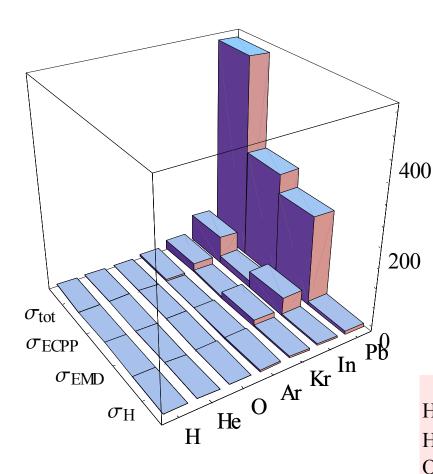
Same *geometrical* transverse beam size and emittance ⇒ some aspects are similar

Considerations of optics, dynamic aperture, mechanical acceptance, etc. more or less carry over from protons.

Electromagnetic Interactionsof Heavy ions

QED effects in the peripheral collisions of heavy ions					
Rutherford scattering:	$^{208} Pb^{82+} + ^{208} Pb^{82+} \xrightarrow{\gamma} ^{208} Pb^{82+} + ^{208} Pb^{82+}$	Copious but harmless			
Free pair production:		Copious but harmless			
Electron capture by pair production (ECPP)	208 Pb $^{82+}$ + 208 Pb $^{82+}$ \longrightarrow 7 Pb $^{82+}$ + 208 Pb $^{81+}$ + e $^{+}$ Electron can be captured to a number of bound states, not only 1s.	Secondary beam out of IP, effectively off-momentum" $\delta_p = \frac{1}{Z-1} = 0.012 \text{ for Pb}$			
Electromagnetic Dissociation (EMD)	$ \begin{array}{c} ^{208} \text{Pb}^{82+} + ^{208} \text{Pb}^{82+} \xrightarrow{\gamma} \\ \downarrow^{207} \text{Pb}^{82+} + n \end{array} $	Secondary beam out of IP, effectively off-momentum: $\delta_p = -\frac{1}{A-1} = -4.8 \times 10^{-3} \text{ for Pb}$			

Other processes have smaller cross sections.


Importance of ECPP for machine first pointed out by Spencer Klein.

Nuclear cross sections

 σ /barn

$$\delta(\Delta Q, \Delta A) \simeq \frac{1 + \Delta A/A}{1 + \Delta Q/Q} - 1$$

Cross-section for Pb totally dominated by electromagnetic processes Values for non-Pb ions may need upward revision

ECPP from Meier et al, Phys. Rev. A, **63**, 032713 (2001), calculation for Pb-Pb at LHC energy

Total cross - section for ion removal from beam

$$\sigma_{tot} = \sigma_{H} + \sigma_{EMD} + \sigma_{ECPP}$$

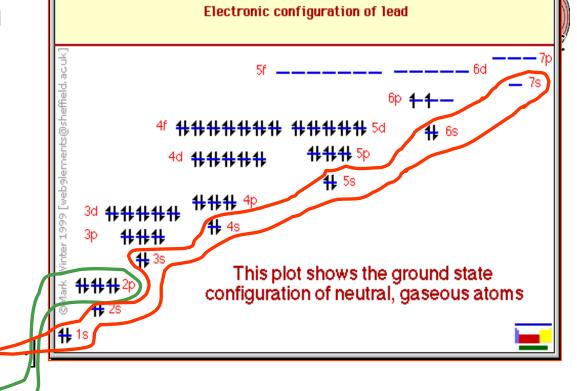
	$\sigma_{ m H}$	$\sigma_{ m EMD}$	$\sigma_{ ext{ECPP}}$	σ_{tot}
Hydrogen	0.105	0	4.25×10^{-11}	0.105
Helium	0.35	0.002	$1. \times 10^{-8}$	0.352
Oxygen	1.5	0.13	0.00016	1.63016
Argon	3.1	1.7	0.04	4.84
Krypton	4.5	15.5	3.	23.
Indium	5.5	44.5	18.5	68.5
Lead	8	225.	280.756	513.756

Cross-section for ECPP

TABLE I. (Cross section for the bound-free pair production of *one* ion *only* for different bound states) are given for RHIC and LHC conditions for different ion-ion collisions. Also given are the parameters A and B to be used in Eq. (28) for the dependence on the Lorentz factor γ_c .

Involved topic,	numerous
references	

Extrapolation from SPS measurements at lower energy in Grafström et al, PAC99


Meier et al, Phys. Rev. A, **63**, 032713 (2001), calculation for Pb-Pb at LHC energy

Bound state $\sigma(\text{RHIC})$ (b) $\sigma(\text{LHC})$ (b) A (b) B (b) $^{1}\text{H}^{1}\text{H}$ $\gamma_{e}=250$ $\gamma_{e}=7500$ $1s$ 2.62×10^{-11} 4.25×10^{-11} 5.36×10^{-12} -3.40×10^{-12} $2s$ 3.28×10^{-12} 5.31×10^{-12} 6.70×10^{-13} -4.23×10^{-13} $2p(1/2)$ 3.75×10^{-17} 6.10×10^{-17} 7.73×10^{-18} -5.20×10^{-18} $2p(3/2)$ 1.47×10^{-17} 2.41×10^{-17} 3.10×10^{-18} -2.42×10^{-18} $3s$ 9.70×10^{-13} 1.57×10^{-12} 1.98×10^{-13} -1.26×10^{-13} $3s$ 9.70×10^{-13} 1.57×10^{-12} 1.98×10^{-13} -1.26×10^{-13} $3s$ 9.70×10^{-13} 3.62×10^{-2} $2s$ 2.00×10^{-3} 3.62×10^{-3} $2p(1/2)$ 1.39×10^{-5} 2.52×1 $2p(3/2)$ 3.63×10^{-6} 6.70×1 $3s$ 5.90×10^{-4} 1.07×1 $2p(3/2)$ 3.63×10^{-6} 6.70×1 $3s$ 5.90×10^{-4} 1.07×1 $2p(3/2)$ 3.80×10^{-3} 7.16×1 $3s$ 1.26×10^{-1} 2.34×1 $7^{9}\text{Aut}^{-79}\text{Aut}$ $7^{9}\text{Aut}^{-79}\text{Aut}$ $7^{9}\text{Aut}^{-79}\text{Aut}$ $7^{9}\text{Aut}^{-79}\text{Aut}$ $7^{9}\text{Aut}^{-79}\text{Aut}$ $7^{9}\text{Aut}^{-79}\text{Aut}$ $7^{9}\text{Aut}^{-79}\text{Aut}$ 7^{9}Aut^{-99} 9.299 9						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bound state	$\sigma(RHIC)$ (b)	$\sigma(LHC)$ (b)	A (b)	B (b)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹ H- ¹ H	$\gamma_c = 250$	$\gamma_c = 7500$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5		4.25×10^{-11}	5.36×10^{-12}	-3.40×10^{-12}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5	3.28×10^{-12}	5.31×10^{-12}	6.70×10^{-13}	-4.23×10^{-13}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2p(1/2)	3.75×10^{-17}	6.10×10^{-17}	7.73×10^{-18}	-5.20×10^{-18}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2p(3/2)	1.47×10^{-17}	2.41×10^{-17}	3.10×10^{-18}	-2.42×10^{-18}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.5	9.70×10^{-13}	1.57×10^{-12}	1.98×10^{-13}	-1.26×10^{-13}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁰ Ca- ²⁰ Ca	$\gamma_c = 125$	$\gamma_c = 3750$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5			3.84×10^{-3}	-2.48×10^{-3}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5	2.00×10^{-3}	3.62×10^{-3}	4.78×10 ⁻⁴	-3.07×10^{-4}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2p(1/2)	1.39×10^{-5}	2.52×1		- d - c	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2p(3/2)	3.63×10^{-6}	6.70×1	ectron (can be	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.5	5.90×10^{-4}	1.07×1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	⁴⁷ Ag- ⁴⁷ Ag	$\gamma_c = 109$	$\gamma_c = 32$	ntured	to a nur	nher
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5	3.51	6.46	pturcu	to a mai	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5	4.33×10^{-1}	7.98×1	hound	ctatac r	act
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2p(1/2)	2.81×10^{-2}	5.21×1	Dound	States, 1	IOL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2p(3/2)	3.80×10^{-3}	7.16×1		•	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.5	1.26×10^{-1}	2.34×1	ilv 1s		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	⁷⁹ Au- ⁷⁹ Au	$\gamma_c = 100$	$\gamma_c = 30$	117 131		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5	94.9	176	23.8	-14./	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.5	12.1	22.4	3.04	-1.87	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2p(1/2)	3.62	6.77	9.27×10^{-1}	-6.56×10^{-1}	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2p(3/2)	2.10×10^{-1}	4.01×10^{-1}	5.62×10^{-2}	-4.93×10^{-2}	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3.46	6.40	8.67×10^{-1}	-5.34×10^{-1}	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁸² Pb- ⁸² Pb	$\sqrt{2}=99$	$\sqrt{2} = 2957$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1 s)	121	(225)	30.4	-18.7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 <i>s</i>	15.5	28.8	3.91	-2.39	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(2p(1/2))	5.21	(9.76)	1.34	-9.46×10^{-1}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2p(3/2))	2.78×10^{-1}	(5.33×10^{-1})	7.50×10^{-2}	-6.61×10^{-2}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(3 <i>s</i>)	4.42	8.20	1.11	-6.79×10^{-1}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	⁹² U- ⁹² U	$\gamma_c = 97$	$\gamma_c = 2900$			
2p(1/2) 16.7 31.3 4.30 -3.00 2p(3/2) 6.77×10 ⁻¹ 1.30 1.83×10 ⁻¹ -1.63×10 ⁻¹	1.5	263	488	66.0	-39.0	
2p(3/2) 6.77×10 ⁻¹ 1.30 1.83×10 ⁻¹ -1.63×10 ⁻¹	2.8	34.4	63.7	8.63	-5.10	
	2p(1/2)	16.7	31.3	4.30	-3.00	
	2p(3/2)	6.77×10^{-1}	1.30	1.83×10^{-1}	-1.63×10^{-1}	
		9.67	17.9	2.43	-1.44	

ECPP Cross-section

Use Meier et al's result for Pb-Pb at LHC energy:

 $\sigma_{\text{ECPP}}(ns) \approx \frac{\sigma_{\text{ECPP}}(1s)}{n^3}$

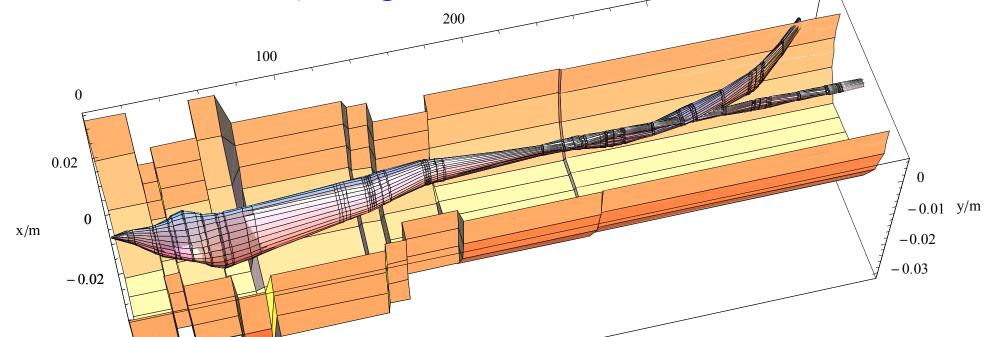
$$\sigma_{\text{ECPP}} = \left[\sigma_{\text{ECPP}}(1s) + \sigma_{\text{ECPP}}(2s) + \sigma_{\text{ECPP}}(3s) + \sigma_{\text{ECPP}}(2p_{1/2}) + \sigma_{\text{ECPP}}(2p_{3/2}) + \cdots\right]$$

$$\approx [225. + 28.8 + 8.2 + \cdots] + 9.76 + 0.533 + \cdots$$
 barn

$$\approx [\zeta(3)\sigma_{\text{ECPP}}(1s)] + 9.76 + 0.533 + \cdots$$
 barn

≈ 281 barn

C.f. 204 barn used in previous discussions


Main and ECPP secondary beams

400

 5σ beam envelopes, emerging to right of IP2

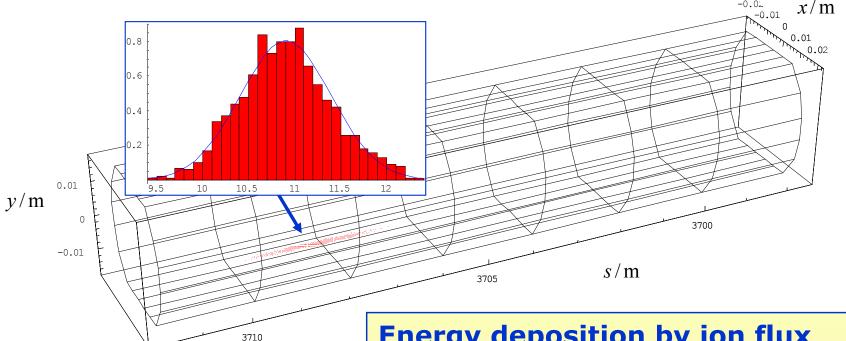
Beam sizes different, strong chromatic effects³⁰⁰

Equivalent
$$\delta_p = \frac{1}{Z - 1} = 0.012$$
 for Pb

Shifted momentum outside momentum acceptance δ_p^{max}

$$\left|\delta_p\right| > \delta_p^{\text{max}} \approx 6 \times 10^{-3}$$

Collimation of secondary beam not easy, to be studied.


Secondary beam spot

Quench limit (conservative) is 8×10^4 Pb/m/s

Dilution over $l_d \approx 1 \,\mathrm{m}$,

In quadrature with shower length 1 m \approx 1.4 m

Beam screen in a dispersion suppressor dipole

Energy deposition by ion flux from ECPP exceeds quench limit of superconducting magnets by factor ~2 at nominal luminosity. (some safety factors in hand?)

CERN

Cures for ECPP?

Collimator/spoiler

Needs good separation of main and secondary beam, not easy

Foil

Re-strip ions?

Laser stripping?

Huge Doppler shift helps (82 nm wavelength!)
Power? Feasibility?

Not seen in RHIC because of large chamber ? (would need $D_x > 3$ m for 4 cm half-width)

Consequences of EMD effect

Magnetic rigidity of ion decreased Not studied in much detail so far

$$(Z_1, A_1) + (Z_2, A_2) \xrightarrow{\gamma} (Z_1, A_1) + (Z_2, A_2) *$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad (Z_2, A_2 - 1) + n$$

Equivalent
$$\delta_p = -\frac{1}{A-1} = -4.8 \times 10^{-3}$$
 for Pb

Compare shifted momentum spread to momentum acceptance δ_p^{max}

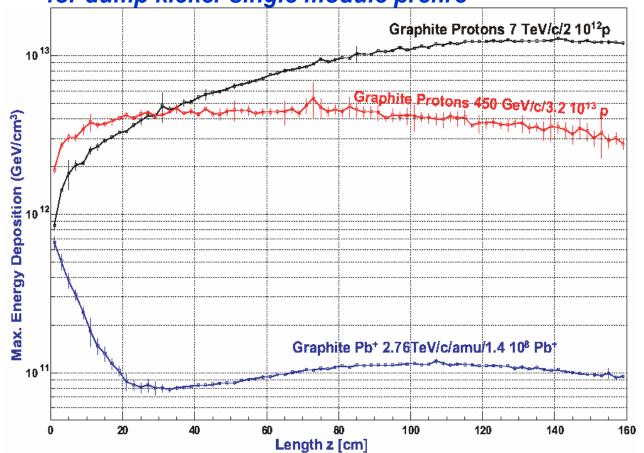
$$\left|\delta_{p}\right| + \sigma_{\delta} = 4.8 \times 10^{-3} + 0.8 \times 10^{-3} < \delta_{p}^{\text{max}} \approx 6 \times 10^{-3}$$

⇒ should be taken up by momentum collimation system

Collimation

²⁰⁸Pb⁸²⁺ ion-graphite interactions compared with p-graphite interactions.

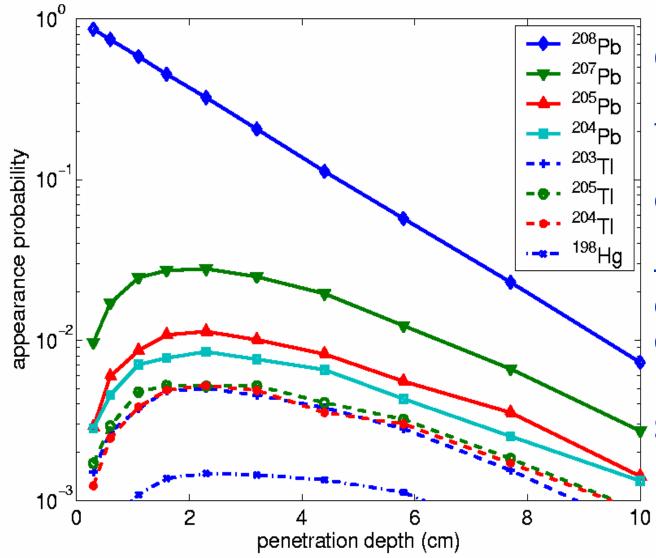
Physics process	p	р	$^{208}{\rm Pb}^{+}$	$^{208}{\rm Pb}^{+}$
	injection	collision	injection	collision
Ionization energy loss $\frac{dE}{E dx}$	0.12 %/m	0.0088 %/m	9.57 %/m	0.73 %/m
Multiple scattering projected RMS angle	$73.5 \mu { m rad/m}^{1/2}$	$4.72 \mu \rm{rad/m}^{1/2}$	$73.5 \mu { m rad/m}^{1/2}$	$4.72 \mu { m rad/m}^{1/2}$
Electron capture length	-	-	20 cm	312 cm
Electron stripping length	-	-	0.028 cm	0.018 cm
ECPP interaction length	-	-	24.5 cm	0.63 cm
Nuclear interaction length (incl. fragmentation)	38.1 cm	38.1 cm	2.5 cm	2.2 cm
Electromagnetic dissociation length	-	-	33.0	19.0 cm


From Hans Braun

Robustness of collimator against mishaps

FLUKA calculations from Vasilis Vlachoudis for dump kicker single module prefire

The higher
Ionisation loss
makes the
energy
deposition at
the impact side
almost equal to
proton case,
despite 100
times less beam
power.

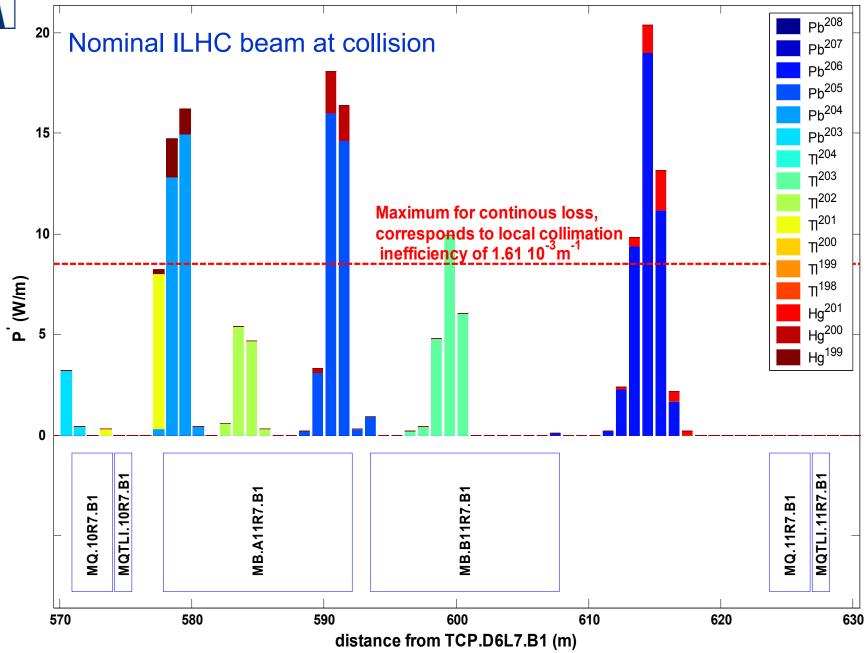

Similar damage potential.

From Hans Braun

Cleaning efficiency

Collimators tend to put fragments on trajectories with large momentum errors and small betatron amplitude – but the secondary collimators are designed to cut betatron amplitudes

Studies under way.


The probability to convert a ²⁰⁸Pb nucleus into a neighboring nucleus. Impact on graphite at LHC collision energy.

From Hans Braun

Fractional heat load in dispersion suppressor, τ =12min

Optics

Ion optics at injection/ramp

assumed to be essentially same as protons

Treat only lead ion optics in collision

Update for move of Q3 magnets (part of V6.5)

Focus on IR2 (ALICE, specialised ion experiment)

Maintain $\beta^*=0.5$ m (unlike protons which have $\beta^*=0.55$ m for reasons of aperture)

Ion collisions for ATLAS/CMS may use proton optics

Or also squeeze further

Main issue is separation

Optics re-matched by T. Risselada

Longitudinal parameters

		Injection	Collision		
Beam parameters					
Lead ion energy	[GeV]	36900	574000		
Lead ion energy/nucleon	[GeV]	177.4	2759.		
Relativistic "gamma" factor		190.5	2963.5		
Number of ions per bunch		7. 3	$\times 10^{7}$		
Number of bunches		5	592		
Transverse normalized emittance	$[\mu\mathrm{m}]$	1.4^{a}	1.5		
Peak RF voltage (400 MHz system)	[MV]	8	16		
Synchrotron frequency	[Hz]	63.7	23.0		
RF bucket half-height		1.04×10^{-3}	3.56×10^{-4}		
Longitudinal emittance (4σ)	[eV s/charge]	0.7	2.5^{b}		
RF bucket filling factor		0.472	8.316		
RMS bunch length ^c	[cm]	9.97	7.94		
Circulating beam current	Longitudin	al omittano	o at		
Stored energy per beam		nal emittanc			
Twiss function $\beta_x = \beta_y = \beta^*$ at IP2	injection from SPS has been				
RMS beam size at IP2	reduced since we no longer				
Geometric luminosity reduction factor F ^d					
Peak luminosity at IP2	have 200 MHz RF system for				
capture.					

Intra-beam scattering

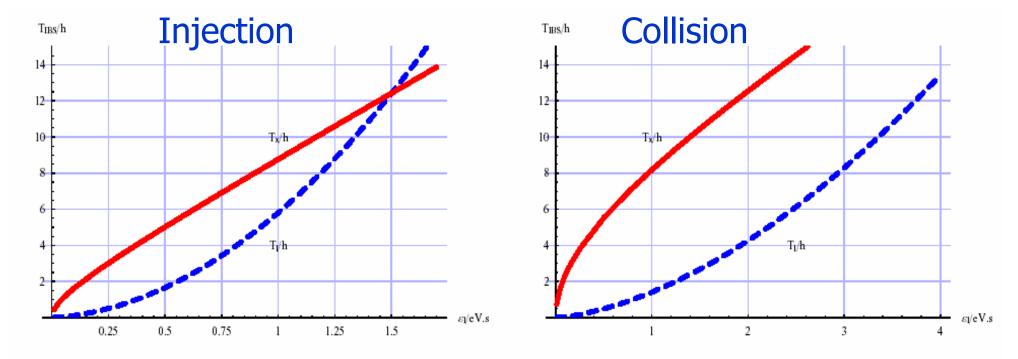


Figure 21.6: Emittance growth times from intra-beam scattering as a function of longitudinal emittance for $^{208}\text{Pb}^{82+}$ at injection (left plot) and collision (right plot) energies. The transverse emittances and beam intensities are taken to have their nominal values and the total circumferential voltage from the 400 MHz RF system are $V_{\text{RF}} = 8\,\text{MV}$ and $V_{\text{RF}} = 16\,\text{MV}$ respectively. Solid and dashed lines correspond to the growth times for horizontal and longitudinal emittances.

Synchrotron Radiation

LHC is the first *proton* storage ring in which synchrotron radiation plays a noticeable role, (mainly as a heat load on the cryogenic system) It is also the first *heavy ion* storage ring in which synchrotron radiation has significant effects on beam dynamics.

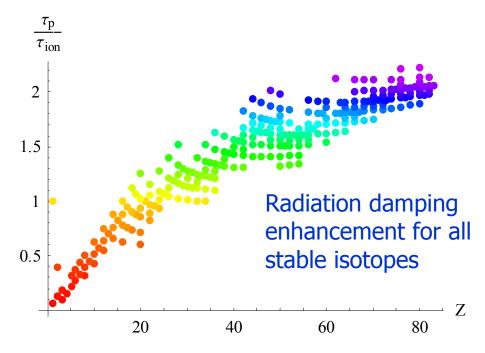
Surprisingly, perhaps, some of these effects are stronger for lead ions than for protons.

Synchrotron radiation loss per turn

$$U = \frac{4}{3} \frac{\pi Z^2 r_p E_{\text{ion}}^4}{c^6 A^4 m_p^3 \rho}, \qquad E_{\text{ion}} = \frac{Z}{A} E_p$$

Synchrotron Radiation

Scaling with respect to protons in same ring, same


magnetic field

$$\frac{U_{\rm ion}}{U_{\rm p}} \simeq \frac{Z^6}{A^4} \simeq 162, \qquad \qquad \frac{u_{\rm ion}^c}{u_{\rm p}^c} \simeq \frac{Z^3}{A^3} \simeq 0.061,$$

$$\frac{N_{\rm ion}}{N_{\rm p}} \simeq \frac{Z^3}{A} \simeq 2651, \qquad \qquad \frac{\tau_{\rm ion}}{\tau_{\rm p}} \simeq \frac{A^4}{Z^5} \simeq 0.5$$

Radiation damping for Pb is twice as fast as for protons

Many very soft photons
Critical energy in
visible spectrum

Lead is (almost) best, deuteron is worst.

Damping partition number variation

Mariation of longitudinal damping partition number with momentum deviation of closed or bit?

$$\alpha_{\varepsilon}(\delta_{s})\frac{1}{\tau_{\varepsilon}} \propto J_{\varepsilon}(\delta_{s}), \quad \alpha_{x}(\delta_{s}) = \frac{1}{\tau_{x}} \propto (3 - J_{\varepsilon}(\delta_{s}))$$

$$J_{\varepsilon}(\delta_{s}) = \frac{d \log U(\delta_{s})}{d\delta_{s}} \approx 2 + \frac{I_{4}}{I_{2}} + 2\frac{I_{8}}{I_{2}}\delta_{s}, \quad \delta_{s} = -\frac{1}{\eta} \frac{\Delta f_{RF}}{f_{RF}}$$

$$I_2 \approx \frac{2\pi}{\rho}, \quad I_4 \approx 10^{-3} I_2,$$

$$I_8 = \oint (K_1(s)D_x(s))^2 ds$$

Dampingrate for horizontal betatronmotion

$$\alpha_x(\delta_s) = J_x(\delta_s)\alpha_x(0) = (3 - J_{\varepsilon}(\delta_s))\alpha_x(0)$$

Allows us to switch some radiation damping from longitudinal into horizontal motion

Heavily used at LEP, PETRA, TRISTAN, ...

Overcome IBS, shrinking horizontal emittance to maximize integrated luminosity

Price of a few mm negative closed orbit in arc QFs – needs further study

Luminosity and beam lifetime

Initial beam (intensity) lifetime due to beambeam interactions (non-exponential decay)

$$\tau_{NL} = \frac{k_b N_b}{n_{\text{exp}} L \,\sigma_{\text{tot}}} = \frac{22.4 \,\text{hour}}{n_{\text{exp}}} \quad \text{for nominal } L = 10^{27} \,\text{cm}^{-2} \text{s}^{-1} \text{with Pb - Pb}$$

where n_{exp} is the number of experiments illuminated

But luminosity may be limited by experiment or quench limit

$$L = \frac{k_b N_b^2 f_0}{4\pi \sigma^{*2}} = \frac{k_b N_b^2 f_0}{4\pi \beta^* \varepsilon_n} \gamma$$

 \Rightarrow can have same luminosity by varying β* $\propto N_b^2$

 β^* -tuning during collision to maximise integrated luminosity – especially if N_b can be increased.

Luminosity and beam lifetime

Initial beam (intensity) lifetime due to beambeam interactions (non-exponential decay)

$$\tau_L = \frac{k_b N_b}{n_{\text{exp}} L \,\sigma_{\text{tot}}} = \frac{22.4 \,\text{hour}}{n_{\text{exp}}} \quad \text{for nominal } L = 10^{27} \,\text{cm}^{-2} \text{s}^{-1} \text{with Pb - Pb}$$

where n_{exp} is the number of experiments illuminated

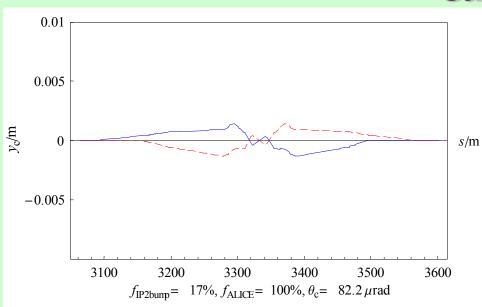
But luminosity may be limited by experiment or quench limit (see later)

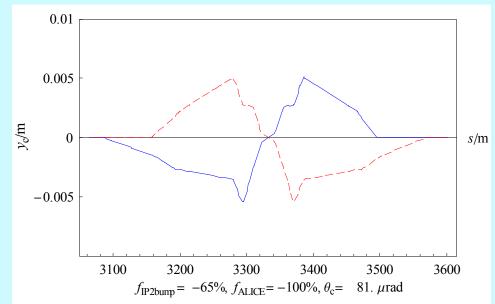
$$L = \frac{k_b N_b^2 f_0}{4\pi \sigma^{*2}} = \frac{k_b N_b^2 f_0}{4\pi \beta^* \varepsilon_n} \gamma$$

 \Rightarrow can have same luminosity by varying β* $\propto N_b^2$

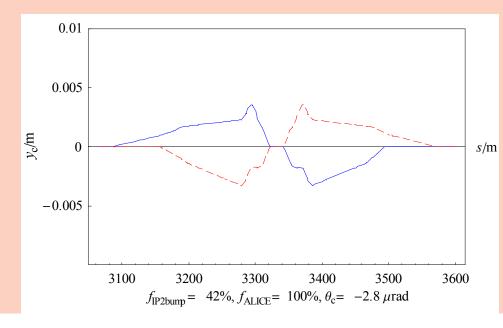
Idea of β^* -tuning during collision to maximize integrated luminosity – especially if N_b can be increased.

Nominal scheme, lifetime parameters (again)


		Injection	Collision		
Interaction data					
Total cross section	[mb]	-	514000		
Beam current lifetime (due to beam-beam) ^a	[h]	-	11.2		
Intra Beam	Scattering				
RMS beam size in arc	[mm]	1.19	0.3		
RMS energy spread $\delta E/E_0$	$[10^{-4}]$	3.9	1.10		
RMS bunch length	[cm]	9.97	7.94		
Longitudinal emittance growth time	[hour]	3	7.7		
Horizontal emittance growth time ^b	[hour]	6.5	13		
Synchrotron	Radiation				
Power loss per ion	[W]	3.5×10^{-14}	2.0×10^{-9}		
Power loss per metre in main bends	$[Wm^{-1}]$	8×10^{-8}	0.005		
Synchrotron radiation power per ring	[W]	1.4×10^{-3}	83.9		
Energy loss per ion per turn	[eV]	19.2	1.12×10^{6}		
Critical photon energy	[eV]	7.3×10^{-4}	2.77		
Longitudinal emittance damping time	[hour]	23749	6.3		
Transverse emittance damping time	[hour]	47498	12.6		
Variation of longitudinal damping partition number ^c		230	230		
Initial beam and luminosity lifetimes					
Beam current lifetime (due to residual gas scattering) ^d	[hour]	?	?		
Beam current lifetime (beam-beam, residual gas)	[hour]	-	< 11.2		
Luminosity lifetime ^e	[hour]	-	< 5.6		

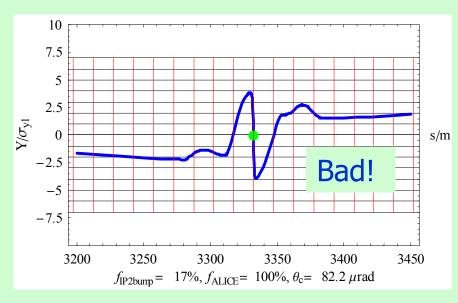


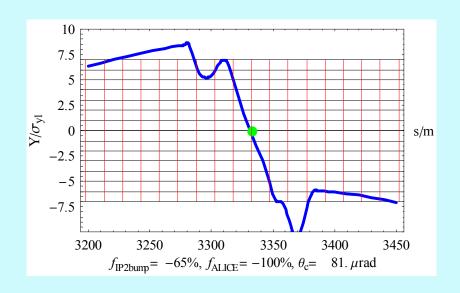
Separation in IR2: three illustrative


cases

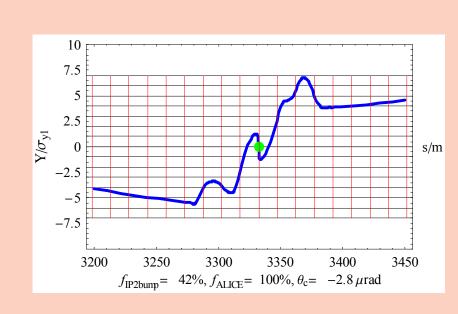
Two ways of getting a crossing angle of 80 μrad; one way to get zero crossing angle.

Beam 1 / Beam 2



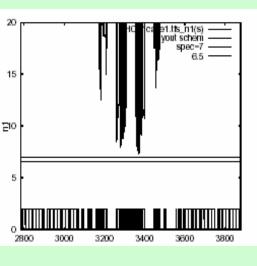

Total separation is superposition of ALICE spectrometer bump and "external" vertical separation **Animation!**

Parasitic beam-beam encounters

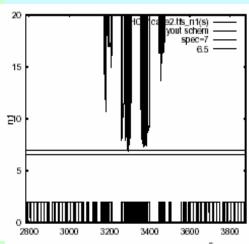


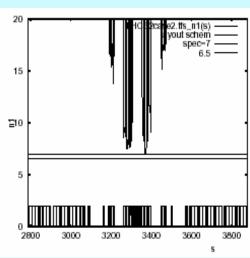
Show only vertical separation in units of vertical RMS beam size of Beam 1.

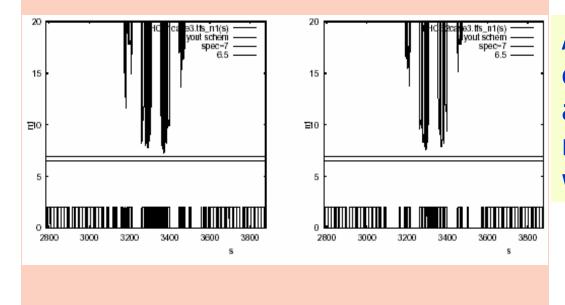
Red lines are possible (ion) encounters (S_b/2)



Zero crossing angle is just about achievable with minimum 3σ separation (strictly need 20 μ rad).




Aperture (APL program)



All meet the canonical aperture requirements with β *=0.5m

Interaction of Pb ions with residual gas

Losses due to nuclear scattering on residual gases

Atoms in residual gases (6 usual suspects in Design Report for protons) have Z≤8.

For simplicity, discuss only the dominant inelastic nuclear scattering (leave out elastic and electromagnetic contributions, EMD, ECPP which are smaller). Somewhat optimistic!

Dominant beam-gas lifetime: is independent of intensity

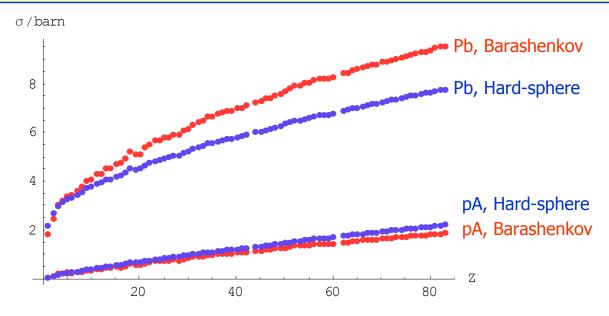
$$\frac{1}{\tau_{\rm bg}} = c \sum_{i \in \text{gases}} \sigma_i n_i$$

Multiple Coulomb scattering on residual gas also causes emittance growth (similar to protons, not treated here). k_{LLE}

Lost ions are a heat load:

Inelastic nuclear cross sections

Cross-sections of proton-nucleus and nucleus-nucleus inelastic interactions at ~ 10 GeV/n, assumed similar at 2.75 TeV/n (as is the case for protons)


Simple formula, V.S. Barashenkov, 1993

$$pA: \ \sigma_{in}(Z,A) = \sigma_0 \left[A^{1/3} + 1.85 \frac{A^{1/3}}{1 + A^{1/3}} + 2.5 \left(1 - \frac{2Z}{A} \right) - 1 \right]^2$$

$$A_1 A_2: \ \sigma_{in}(Z_1, A_1, Z_2, A_2) = \sigma_0 \left[A_1^{1/3} + A_2^{1/3} + 1.85 \frac{(A_1 A_2)^{1/3}}{A_1^{1/3} + A_2^{1/3}} + 2.5 \left(1 - \frac{Z_1}{A_1} - \frac{Z_2}{A_2} \right) - 2 \right]^2$$

$$where \ \sigma_0 = 0.038 \ barn.$$

Comparison with earlier Hard-sphere overlap model (Bradt & Peters 1950)

Required gas pressures

Protons with lifetime 100h

Gas	$\sigma_{ ext{in}}$	$\rm n/m^{-3}$	P(300K)/nTorr	P(5K)/Pa	$P_{bg}/(W/m)$
Н2	0.09	1.03×10^{15}	32.	7.11×10^{-8}	0.0377
Не	0.113	8.2×10^{14}	25.5	5.66×10^{-8}	0.0377
CH4	0.433	2.14×10^{14}	6.65	1.48×10^{-8}	0.0377
Н2О	0.397	2.33×10^{14}	7.24	1.61×10^{-8}	0.0377
CO	0.56	1.65×10^{14}	5.14	1.14×10^{-8}	0.0377
CO2	0.8	1.07×10^{14}	3.32	7.37×10^{-9}	0.0377

Lead ions with pressure that gave proton lifetime 100h

Cab		11/ 111	cbg/	- bg/ (**/ ***/
Н2	3.75	1.03×10^{15}	2.4	0.0165
Не	2.48	8.2×10^{14}	4.55	0.00872
CH4	10.9	2.14×10^{14}	3.96	0.01
H2O	7.52	2.33×10^{14}	5.28	0.00752
CO	7.22	1.65×10^{14}	7.76	0.00512
CO2	11.	1.07×10^{14}	7.89	0.00503

Lead ions with lifetime 100h

Gas	$\sigma_{ ext{in}}$	$\rm n/m^{-3}$	P(300K)/nTork	P(5K)/Pa	$P_{bg}/(W/m)$
Н2	3.75	2.47×10^{13}	0.768	1.71×10^{-9}	0.000397
Не	2.48	3.73×10^{13}	1.16	2.58×10^{-9}	0.000397
CH4	10.9	8.47×10^{12}	0.263	5.85×10^{-10}	0.000397
H20	7.52	1.23×10^{13}	0.383	8.5×10^{-10}	0.000397
CO	7.22	1.28×10^{13}	0.399	8.86×10^{-10}	0.000397
CO2	11.	8.43×10^{12}	0.262	5.82×10^{-10}	0.000397

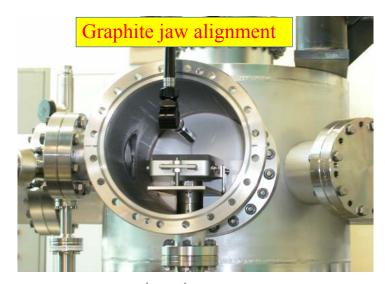
Vacuum: ion-induced molecular desorption

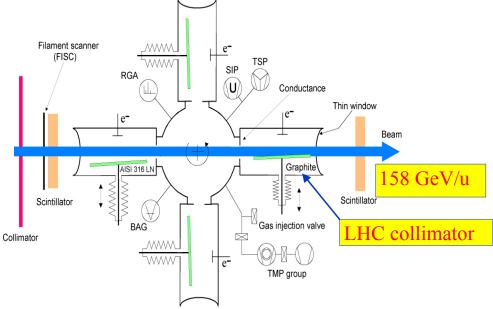
During heavy-ion operation, alarmingly large pressure rises observed in diverse machines at CERN, GSI, BNL.

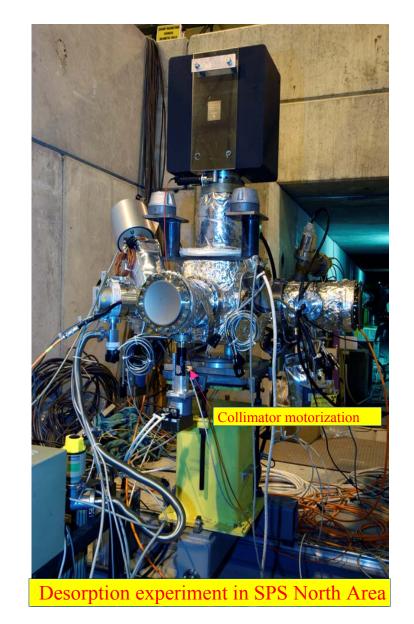
Dynamic pressure rise by molecular desorption from lost beam ions.

Not well understood, data is sparse, little information on parameter-dependences. Workshop in Dec 2003 at BNL.

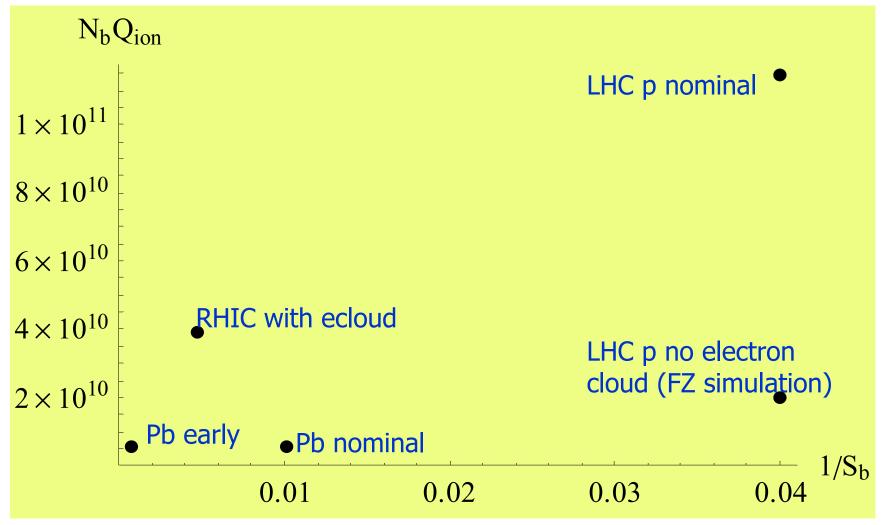
First results from recent SPS experiment are reassuring.


n	_	$\Delta p S$
' (_	$\overline{\dot{N}k_{B}T}$


Accelerator	Energy [MeV/u]	Particle	Desorption yield [molecules/ion]
AGS LINAC3	1 4.2 4.2	Au ³¹⁺ Pb ⁵³⁺ Pb ²⁷⁺	$\sim 10^5$ $10^3 2 \times 10^4$ $10^3 2 \times 10^4$
SIS18 RHIC	8.6 8900	U^{28+} Au^{79+}	$4 \times 10^3 \dots 1 \times 10^4$ $\sim 1.5 \times 10^7$



Dynamic outgassing tests of graphite collimators with In⁴⁹⁺ at 158 GeV/u



J.M. Jowett, BNL Accelerator Physics Seminar, 19/3/2004

Electron Cloud effect with ions?

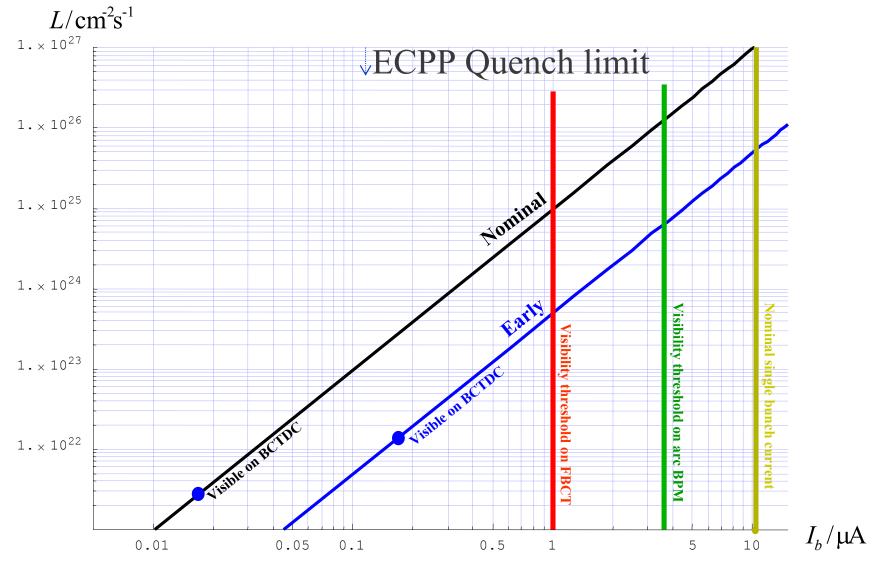
LHC

Key parameters are charge/bunch and bunch spacing We do not expect electron cloud effects with Pb ions.

Beam Instrumentation

Instrumentation optimised for protons early on Lead beams invisible on arc BPMs at about factor 3 below full intensity.

Recent improvement of electronics


"Early" scheme – 10 times fewer bunches but full intensity/bunch (limited by injectors)

Visibility on beam current monitors also limited

Operational parameter space with lead ions

Thresholds for visibility on BPMs and BCTs.

Tentative I-LHC Schedule (Early Beam)

	LEIR injection line	LEIR ring	PS	SPS	LHC
Start hardware commissioning	January 2005	April 2005 ¹	February 2006		
Start beam commissioning	May 2005	August 2005 ¹	May 2006	(late 2006?) spring 2007	from April 2008
Problems	New source available? Hardware installed? Little time for hardware commissioning	LEIR conversion completed? Maybe running- in through winter 2005/6?	Start-up after an 18-months shutdown with new beams	SPS experts are busy commission- ing LHC ring in 2007	ALICE wants beam "at the end of 1 st proton period" (Nov. 2007?)

¹SPS and PS stopped in 2005→ "ideal" year for LEIR commissioning (more help available)

Conclusions

LHC will open up a new regime of ultrarelativisitic heavy-ion physics

Operation of LHC with lead ions limited by new effects, qualitatively different from protons

Restricted to a narrow operational range of parameters below the nominal luminosity

"Early scheme" will allow relatively safe commissioning, access good initial physics

Reduced risk of magnet quenches from ECPP and collimation

Uncertainties to be resolved with further studies ECPP heating, EMD losses, vacuum, collimation, RF noise, ...